
* Copyright © 2006 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

100

A BIOINFORMATICS EXPERIENCE COURSE*

Charles Toth and Richard Connelly
Biology and Mathematics/Computer Science Departments

ctoth@providence.edu and rconnell@providence.edu
Providence College

Providence, RI 02918

ABSTRACT
The course is an upper level elective that pairs a biology major with a
computer science major. The biology and computer science components are
loosely coupled. The former immerses students in an on-going research project
while the latter introduces programming to biologists and demonstrates the
complexity of sequence analysis. The goal is to comprehend the challenges in
the other discipline from peer-to-peer experience.

1. COURSE STRUCTURE AND GOAL
The course is an upper level elective for computer science and biology students. It

is designed for an even distribution of biologists and computer scientists. Each student
is teamed with one from the other discipline. The goal is to have each student
comprehend the challenges in the other discipline from peer-to-peer experience.

The course has loosely coupled biology and computer science components. The
biology component immerses the students in an on-going research project that requires
both the wet science of molecular biology and internet-based data mining and sequence
analysis. The computer science component is a series of labs that introduce programming
to the biologists and use established dynamic programming methods to demonstrate the
complexity of sequence analysis. Both components use student presentations to evaluate
performance.

The interdisciplinary student team concept is borrowed from LeBlanc and Dyer
([17]). Also, experience with a poster project ([30]) clearly showed that the team method
would much improve the learning experience.

CCSC:Northeastern Conference

101

The course is designed to be stand-alone. It differs from the “infusion” model ([16,
17]) where bioinformatics is incorporated into the cores of each discipline. The course
is also not intended to approximate an undergraduate bioinformatics curriculum ([3-5, 9,
20, 26, 27]).

2. BIOLOGY COMPONENT
The students were immersed in an on-going research project that provided

experience in how bioinformatics is utilized by scientists engaged in basic research. A
project was selected that struck a balance between the wet science of molecular biology
and the computer-based work of database mining and DNA sequence analysis. Other
undergraduate bioinformatics courses link existing computer science and biology courses
to demonstrate bioinformatics, but this course directly demonstrated the major role that
bioinformatics plays in genomics research. The decision to use a research project instead
of stand alone labs was to directly demonstrate to the students the integration of different
scientific disciplines.

In general, the biology portion of the course examined how changes in the growth
rate of an organism affect the regulation of genes involved in proliferation. The research
project for the course was the study of lichen growth properties during nutrient starvation
([23]). The hypothesis was that lichens growing on a rock substrate would undergo a
diauxic shift and alter its gene expression profile. A diauxic shift occurs when an
organism switches to a different metabolite. Other Ascomycetes such as Saccharomyces
show a distinct gene regulatory pattern in which mitochondrial oxidative phosphorylation
enzymes are upregulated in response to glucose depletion as the fungus changes its
metabolic program ([8]). Thus, the aim of the lichen experiment was to determine if ATP
synthase and cytochrome C oxidase genes show the same upregulation in the fungal
lichen species. There is minimal genomic information for the fungal genus, Parmelia,
that grow on rock substrates in New England; thus, this project was a perfect way to
introduce the use of genomic databases as a tool to study gene expression in related
organisms ([10]).

In order to study lichen gene expression, database mining and DNA analysis was
required to identify Parmelia gene sequences using homologous sequences from related
Ascomycetes organisms. Each student group picked a unique mitochondrial gene to
study so that the students were performing the same tasks but doing unique work. The
student work groups were quickly immersed in internet-based bioinformatics web sites
to obtain the information needed to generate the genomic data. The students were trained
in direct hands-on experience on how to manipulate and traverse through the annotated
databases to find the correct information and analyze it to generate multiple gene
alignments for their projects. The final outcome for the students was the creation of
degenerate DNA oligonucleotide sequences that matched conserved regions of their
fungal mitochondrial gene of choice.

At this point in the project, the students entered into the molecular biology portion
of the biology component. The students performed all of the experimental protocols
themselves with direct training and supervision of the biology professor. They were able
to generate usable data and learn how to trouble shoot and optimize procedures since the

JCSC 21, 6 (June 2006)

102

work was part of an on-going project and not based on lab exercises or educational kits.
A drawback of using an on-going research project is that oftentimes the project requires
optimization or troubleshooting in order to make sufficient progress. This can be helpful
is demonstrating to students the nature of scientific research, but it can reduce the
effectiveness of the training. Since the completion of the bioinformatics course, the
research project was completed and a manuscript is in preparation. In the future, the
course will run smoother by using protocols and reagents that have previously been
shown to produce usable results.

3. COMPUTER SCIENCE COMPONENT

The computer science portion was done as a series of labs. The secondary, but
initial, objectives were to introduce programming to the biologists, present Perl ([25]) to
the computer scientists, and use regular expressions in bioinformatics. The primary
objective was to show the computational complexity of sequence analysis by learning the
dynamic programming methods in the Needleman-Wunsch (NW) and Smith-Waterman
(SW) alignment algorithms (Chap. 2, [14]). These were then used to introduce the
methods in BLAST ([2]). A Folding@Home ([24]) demonstration further illustrated
complexity.

All the computer scientists were experienced tutors. Traditional Computer Science
1 and 2 labs were rewritten for Perl with additional bioinformatics examples. The
instructor did a conceptual introduction and then the computer scientists taught
programming to the biologists as they learned Perl. Regular expressions were new to all,
but the same pedagogy was used with new labs. These labs emphasized finding open
reading frames (Chap. 1, [14]).

The recursive Fibonacci algorithm was used to introduce dynamic programming.
Students used traditional call stack and call tree methods to learn how memoization ([22])
improves performance. Paper and pencil exercises (based on Chap. 2, [14]) were then
used to teach the dynamic programming techniques in the NW and SW algorithms. Perl
implementations of the algorithms were available for reference.

Starting from the same examples, each team was asked to present how regular
expressions are used to find open reading frames and to present the dynamic
programming techniques in the NW alignment algorithm. The teams were asked to split
the presentation evenly between members.

The student presentations were conceptual because it is unrealistic to expect new
programmers (biologists) to develop practitioner skills in recursion and matrices in one
half of a semester.

4. PREREQUISTES, PEDAGOGY, EVALUATION, FUTURE
There were no formal prerequisites, but all the computer science students had taken

general biology in high school and/or college and one biology student had taken
Computer Science 1. All the computer science students were tutors and most of the
biology students were lab assistants. The course was dually coded so that each student
could take it as an elective in his/her major.

CCSC:Northeastern Conference

103

There were no required or recommended texts. The primary computer science
sources were a general Perl text ([18]), two “Perl for biologists” texts ([12, 29]), and
Chapters 1 and 2 of Fundamental Concepts of Bioinformatics ([14]). The latter is a rich
source for concepts and practice exercises. Single session computer science labs were
used in order to interleave with the slightly unpredictable schedule inherent in research.
The biology portion used the research itself for background concepts, but in the future
selected chapters from a general biology text and research protocols will be utilized to
provide sufficient background for the students.

The students were very motivated and enthusiastic. Their work was exceptional and
clearly revealed that each student had spent considerable effort to thoroughly understand
the material in the other discipline. Five-sixths of the class completed the course
evaluation and the responses were very complimentary and tolerant of "new course"
challenges. As might be expected in an "experience course", the responses indicated that
students were occasionally "over their heads" in the other discipline. Specific suggestions
included requiring an alignment algorithm project (from a biologist) and suggestions for
tightening the components and improving delivery.

Course repetition will tighten the components and smooth the delivery. Most
students take general biology, so it is a reasonable prerequisite for computer scientists.
The schedule makes it difficult for biology students to take Computer Science 1, so it is
not a reasonable prerequisite. The disciplines intersect at the internet sequence analyzers
(BLAST, CLUSTAL, etc.); consequently, recursion and matrices are the underlying
computer concepts. In the future, each team will be asked to extend several labs into a
software project, but the biologist will be an "apprentice" rather than using the traditional
"group" structure. An Introduction To Bioinformatics Algorithms ([13]) has exemplary
extensions of the NW algorithm (Chap. 6).

An “experience course” is a practical response to multi-disciplinary and emerging
technologies. It is consistent with the expectations of today’s students and today’s
marketplace ([19]). It is also consistent with the education of early bioinformatics
practitioners ([13]).

BIOLOGY SYLLABUS

Week Biological Objectives Computer Objectives

1 Identification of homologous
mitochondrial genes from
Ascomycetes

Database mining of Saccharomyces
genome ([21]), BLAST ([2]) analysis
of Saccharomyces genes to identify
fungal homologs, Clustal ([7])
multiple alignment analysis for DNA
lineups

2 Creation of degenerate DNA
oligonucleotides for PCR
amplification from week 1
Clustal results

Oligonucleotide analysis software for
determination of melting temperature,
hairpin formation, heterodimer
formation ([11]).

JCSC 21, 6 (June 2006)

104

3 Lichen RNA isolation

4 cDNA preparation

5 PCR amplification of lichen
cDNA pools, horizontal gel
electrophoresis

6 Optimization of PCR protocols
for primer concentration,
annealing temperature, Mg2+
concentration

7 Real-time PCR analysis of
lichen gene expression

Use of Stratagene MX3000p ([28])
software for real-time PCR cycling
protocols

8 Optimization of real-time PCR
running conditions

9 Quantization of lichen gene
expression using real-time PCR

Use of Stratagene software for
comparative gene quantization

COMPUTER SCIENCE SYLLABUS

Topic Objective(s) Method(s)

Perl
introduction

Computer Scientists:
Learn syntax and scalars.
Biologists:
Learn syntax, assignment,
print, and scalar types from
computer scientists.

Multi-part lab with many “what if”
exercises (e.g., what if a string
scalar is used in arithmetic).

Regular
expression
introduction

Learn regular expression
syntax and substitution and
translation techniques.

Use substitution to convert a DNA
sequence to RNA and use
translation to create the
complement sequence.

Conditional
statement

Biologists learn from
computer scientists.

Traditional CS1 “what if” lab.

Iteration Biologists learn from
computer scientists.

Traditional CS1 lab using factorial
and Fibonacci numbers.
Bioinformatics lab that calculates
the percentage of G’s and C’s in a
DNA sequence.

CCSC:Northeastern Conference

105

Regular
expression
matching
techniques

Find a start codon and its
stop codon.
Find open reading frames
(ORFs).

Lab to find start and stop codons.
Lab to find the ORFs in a RNA
sequence, regardless of starting
nucleotide.

Functions1 Biologists learn from
computer scientists.

Traditional CS1 lab using a
factorial function to calculate a
combination.

Recursive
functions

Biologists learn from
computer scientists.

Traditional CS2 lab using
factorial, Fibonacci numbers, and
combinations. Students trace the
call stack using the Perl debugger
and paper and pencil techniques.

Dynamic
programming1,2

Use memoization ([22]) to
introduce dynamic
programming.

Use a global array in the recursive
Fibonacci algorithm to eliminate
recalculating a Fibonacci number.
Trace the call stack to see the
improvement.

Needleman
Wunsch (NW)
alignment

Learn NW global and
semi-global alignment
methods ([14], Chap. 2).

Use paper and pencil to
“dynamically program” alignment
matrices. Implementations3 are
available for demonstrations.

Smith
Waterman (SW)
alignment

Learn SW local alignment
method ([14], Chap. 2).

Use paper and pencil techniques to
“dynamically program” alignment
matrices. An implementation is
available for demonstration.

Advanced
alignment

Learn additional match-
mismatch scores and gap
penalties ([14], Chap. 2).
Introduce BLAST search
methods ([6], Chap. 7).

Use paper and pencil to calculate
match-mismatch and gap scores.
Use lalign ([15]) to show gap
penalties and BLAST
match-mismatch scores.

Bioperl ([1])
Introduction

Demonstrate download,
FASTA ([6], p. 50), and
BLAST features.

Scripted demonstration lab.

Folding@Home
([24])

Demonstrate
computational scale of
protein folding.

Temporarily install and run
Folding@Home. Show the
simulation time of a protein fold
and the need for distributed
computation. Use the Windows
Task Manager to show zero idle
cycles.

JCSC 21, 6 (June 2006)

106

1 Labs also introduce arrays in Perl.
2 Lab also introduces references and reference parameters.
3 The programs also show how to create a matrix in Perl.

REFERENCES

1. Bioperl. http://bio.perl.org/.

2. BLAST. http://www.ncbi.nlm.nih.gov/BLAST.

3. Buffalo. University of Buffalo Bioinformatics Curriculum.
http://wings.buffalo.edu/academic/department/fnsm/bio-sci/overview.html.

4. Burhans, D.T. and G.R. Skuse, The Role of Computer Science in Undergraduate
Bioinformatics Education. SIGCSE, 2004. 36(1): p. 417-421.

5. Canisius. Canisius College Bioinformatics Curriculum.
http://www.canisius.edu/bif/curriculum.asp.

6. Claverie, J.M. and C. Notredame, Bioinformatics for Dummies. 2003: John Wiley.

7. Clustal. http://www.ebi.ac.uk/clustalw/index.html.

8. DeRisi, J.L., V.R. Iyer, and P.O. Brown, Exploring the Metabolic and Genetic
Control of Gene Expression on a Genomic Scale, in Science. 1997. p. 680-686.

9. Geocities. Bioinformatics Courses Worldwide.
http://www.geocities.com/bioinformaticsweb/coworld.html?200513.

10. Hinds, J.W. Lichen Flora of Eastern North America: The Genus Parmelia Sensu
Stricto. Eastern Lichen Network, DOI: ElectronicLichen Flora of Eastern North
America: The Genus Parmelia Sensu Stricto. Resource Number

11. IDT. Integrated DNA Technologies. http://www.idtdna.com/SciTools/SciTools.aspx.

12. Jamison, D.C., Perl Programming for Biologists. 2003: John Wiley & Sons.

13. Jones, N.C. and P.A. Pevzner, An Introduction To Bioinformatics Algorithms. 2004:
MIT Press.

14. Krane, D.E. and M.L. Raymer, Fundamental Concepts of Bioinformatics. 2003:
Benjamin Cummings.

15. lalign. http://www.ch.embnet.org/software/LALIGN_form.html.

16. LeBlanc, M.D. and B.D. Dyer, Bioinformatics and Computing Curricula 2001: Why
Computer Science is Well Positioned in a Post-genomic World. SIGCSE, 2004.
36(4): p. 64-68.

17. LeBlanc, M.D. and B.D. Dyer, Teaching Together: A Three-Year Case Study in
Genomics. The Journal of Computing Sciences in Colleges, 2003. 18(5): p. 85-95.

18. Lerner, R.M., Core Perl. 2002: Prentice Hall PTR.

CCSC:Northeastern Conference

107

19. Lohr, S., A Techie, Absolutely, And More. New York Times, Aug. 23, 2005, p.
C1-C2.

20. Morgan, E. Bioinformatics Courses Around the World.
http://wbiomed.curtin.edu.au/teach/biochem/resources/Bioinformatics.html.

21. NIH. Saccharomyces Genome Database. http://www.yeastgenome.org/.

22. NISF. Dynamic Programming - Memoization.
http://www.nist.gov/dads/HTML/memoize.html.

23. Palmquist, K., Carbon Economy in Lichens. New Phytol, 2000. 148: p. 11-36.

24. Pande, V. Folding@Home. http://folding.stanford.edu.

25. Perl. http://www.perl.com/.

26. Ramapo. Ramapo College Bioinformatics Curriculum.
http://www.ramapo.edu/catalog_04_05/academicPrograms/TAS/bioinfo.html.

27. RIT. Rochester Institute of Technology Bioinformatics Curriculum.
http://www.rit.edu/~932www/ugrad_bulletin/colleges/cos/bioinfo.html.

28. Strategene. http://www.stratagene.com/homepage/.

29. Tisdall, J.D., Beginning Perl for Bioinformatics. 2001: O'Reilly & Associates.

30. Wray, K.A., Perl Algorithm to Calculate and Categorize PHI and PSI Angles in a
Protein. The Journal of Computing Sciences in Colleges, 2005. 20(5): p. 98-99.

